Skip to main content

Request for feedback: help us improve our tools!

Hello, all!

Greetings from your new Monarch blogger! I’m Lilly, and I will be taking over this blog space to keep you updated about exciting developments being done at the Monarch Initiative. I recently completed my PhD in neuroscience from Oregon Health & Science University, and I am very excited to work with the Monarch team to further study the relationships between genes, phenotypes, and diseases.

During my PhD, I studied how the brain’s innate immune system responds after an injury. Interesting fact: our brain’s immune system is separated from the rest of our body by the blood brain barrier. While white blood cells (leukocytes) patrol our bodies for disease and foreign objects, glial cells defend the brain. Glial cells also have various other functions, including creating myelin (insulation for neurons), and glial cell malfunction can lead to numerous diseases, such as Multiple Sclerosis.

I researched how glial cells react to brain injury by performing experiments with the model system Drosophila melanogaster, also known as the fruit fly. Fruit fly brains are actually strikingly similar to human brains, even though they are very tiny! From my research, I learned that a gene called PP4 is vital for maintaining brain health. PP4 isn’t only important in fruit flies; it is also present in humans and has been implicated in cancer.

Scientists use many different model organisms for research, such as the roundworm C. elegans and the zebrafish Danio rerio. Animal models are integral for understanding how human bodies function; my upcoming blog post will go into more detail about why scientists need to study all organisms to advance our understanding of biology.

In my new role within the Monarch team, I will be working to implement a “help desk” function to answer questions that Monarch users have. There are several ways you can help us help you. Have you tried our Phenogrid widget to compare genotype and phenotype data across multiple models? What about our Text Annotator, which will take blocks of text and pull out phenotypes that you can use for comparing against other diseases or models? Do you have exome data you need help analyzing? Are you a developer? You can help us improve the Monarch tools by contributing directly in GitHub. Our tools are focused on helping researchers and clinicians make useful connections by integrating various types of data, such as genotype and phenotype data, from multiple species.

To help us make better tools, please browse for your favorite genes, diseases, phenotypes/symptoms, or models on, and email us with questions or leave us feedback by creating an issue ticket on our Github account. I look forward to hearing from you!

More about Lilly: Lilly was born and raised in the deserts of west Texas, although she has lived in Rochester, New York; Quito, Ecuador; London, UK; and Portland, OR. Lilly is a founding member of Portland’s Women in Science organization, and is passionate about supporting the advancement of diverse peoples in the sciences. In her spare time, Lilly hangs out with her dog Ladybird and reads sci fi and murder mystery novels.

Popular posts from this blog

Finally, a medical terminology that patients, doctors, and machines can all understand.

By Nicole Vasilevsky, Mark Engelstad, Erin Foster, Julie McMurry, Chris Mungall, Peter Robinson, Sebastian Köhler, Melissa Haendel
For many patients with rare and undiagnosed diseases, getting an accurate diagnosis, or even finding the appropriate experts is a long and winding road. To accelerate and facilitate this process, we developed a medical vocabulary (“HPO”) which is comprised of 12,000 terms that doctors can use to codify the precise and distinct observations about patients and their conditions. The HPO is structured in a way that enables machines to intelligently compare a patient’s profile with what scientists worldwide have already uncovered about diseases and their genetic causes.
Until now, most of the HPO labels and synonyms were composed of clinical terms unfamiliar to patients. For example, a patient may know they are ‘color-blind’, but may not be familiar with the clinical term ‘Dyschromatopsia’. This is why we developed a layer of 5,000 corresponding terms that can b…

Why cross-species phenomics informatics is critical to the PMI

Genomics, electronic health records, participant-provided data, sensors, and mobile health technologies can all contribute to personalized medicine. However, we currently cannot achieve statistical correlations amongst these almost unlimited number of parameters that will be collected by the PMI and the depth of mechanistic understanding that will be required for treatment stratification and the development of novel, targeted therapies. The promise of personalized medicine requires deep knowledge of the relationships between genotype, phenotype, and environmental variables - but we simply don’t have enough data. For example, in the ExAC database there are 3,230 genes with near-complete depletion of predicted protein-truncating variants, where 72% of these genes having no currently established human disease phenotype. If we look across organisms, we see that of these 2311 genes with unknown causal phenotypes/diseases, 88% have an associated phenotype in an ortholog, with 56% having or…

Save the Date: Symposium on Linking Disease Model Phenotypes to Human Conditions

Monarch is co-hosting a NIH Symposium titled “Linking Disease Model Phenotypes to Human Conditions” on September 10-11, 2015 at the Fishers Lane Auditorium, NIH, Rockville, MD. 
The purpose of the meeting is to convene a colloquium on the current status of Phenomics and its role in closing the gap that exists between biomedical research and clinical medical practice. The wealth of whole organism, cellular, and molecular data generated in the research laboratory must be translated into clinically relevant knowledge that enables the physician to make the best possible treatment decisions. Phenomics is gaining momentum due to the availability of the complete genomes for many organisms as well as higher throughput methods to genetically modify model organism genomes and observe and record phenotypes. Disease models comprise some of the most important tools of biomedical research. The efficacy of the use of disease models is based upon the principles of evolutionary conservation between sp…