Skip to main content

NIEHS workshop on defining language standards for environmental health

This week Monarch team members co-chaired and attended a National Institutes of Environmental Health Science (NIEHS) workshop on Development of a Framework for an Environmental Health Science Language (agenda & report). From Love Canal to Chernobyl, from the Clean Water Act to pending regulation of dietary supplements, what we breathe and what we eat is known to contribute to human health outcomes. Consistent capture, transmission, and analysis of these data for comprehensive use in multiple research and clinical environments depends upon standardization and integration of the data across multiple disciplines.

Because we need to compare phenotypes based upon both genotypes and environmental variables over time, Monarch is very interested in understanding ways to represent and integrate these data. We currently have a great diversity of model and human environmental data: reagents targeting specific gene products, physiological perturbations such as exposure to light, drug treatments, and environmental exposures to complex toxicological mixtures.

The goal of the workshop was to initiate a new working group that will focus on requirements and implementation of environmental vocabulary standards for describing these environments. We had an amazing keynote from Elaine Faustman, where she discussed metagenomic profiling of antibiotic resistance determinants in Puget Sound to assess both human health and oceans impacts. Now that is large-scale (global) data integration! We also had the pleasure of hearing Alexa McCray discuss her groups' work on combining very many autism clinical instruments using an ontological approach to better support analysis and reuse of clinical autism diagnostic data in combination with genomic data to support elusive genetic and environmental correlations in autism patients.

And then there was the amusing example of how hard it is to simply find relevant specimens in NCBI BioSample Database due to lack of standardized language:
Query
# records
Feces
22,592
Faeces
1,750
Ordure
2
Dung
19
Manure
154
Excreta
153
Stool
22,756
Stool NOT faeces
21,798
Stool NOT feces
18,314

The outcome of the workshop was a new team consisting of expertise in many disciplines - from biodiversity, to ontologies, computer science, model organism biology, and the human exposome. The prediction is that the group will have a long and interesting history of solving what may be one of the hardest, yet most interesting, data integration problems facing biological science today.

If you are interested in following this work, you can subscribe to the new working group list.

Popular posts from this blog

Finally, a medical terminology that patients, doctors, and machines can all understand.

By Nicole Vasilevsky, Mark Engelstad, Erin Foster, Julie McMurry, Chris Mungall, Peter Robinson, Sebastian Köhler, Melissa Haendel
For many patients with rare and undiagnosed diseases, getting an accurate diagnosis, or even finding the appropriate experts is a long and winding road. To accelerate and facilitate this process, we developed a medical vocabulary (“HPO”) which is comprised of 12,000 terms that doctors can use to codify the precise and distinct observations about patients and their conditions. The HPO is structured in a way that enables machines to intelligently compare a patient’s profile with what scientists worldwide have already uncovered about diseases and their genetic causes.
Until now, most of the HPO labels and synonyms were composed of clinical terms unfamiliar to patients. For example, a patient may know they are ‘color-blind’, but may not be familiar with the clinical term ‘Dyschromatopsia’. This is why we developed a layer of 5,000 corresponding terms that can b…

Why cross-species phenomics informatics is critical to the PMI

Genomics, electronic health records, participant-provided data, sensors, and mobile health technologies can all contribute to personalized medicine. However, we currently cannot achieve statistical correlations amongst these almost unlimited number of parameters that will be collected by the PMI and the depth of mechanistic understanding that will be required for treatment stratification and the development of novel, targeted therapies. The promise of personalized medicine requires deep knowledge of the relationships between genotype, phenotype, and environmental variables - but we simply don’t have enough data. For example, in the ExAC database there are 3,230 genes with near-complete depletion of predicted protein-truncating variants, where 72% of these genes having no currently established human disease phenotype. If we look across organisms, we see that of these 2311 genes with unknown causal phenotypes/diseases, 88% have an associated phenotype in an ortholog, with 56% having or…

Save the Date: Symposium on Linking Disease Model Phenotypes to Human Conditions

Monarch is co-hosting a NIH Symposium titled “Linking Disease Model Phenotypes to Human Conditions” on September 10-11, 2015 at the Fishers Lane Auditorium, NIH, Rockville, MD. 
The purpose of the meeting is to convene a colloquium on the current status of Phenomics and its role in closing the gap that exists between biomedical research and clinical medical practice. The wealth of whole organism, cellular, and molecular data generated in the research laboratory must be translated into clinically relevant knowledge that enables the physician to make the best possible treatment decisions. Phenomics is gaining momentum due to the availability of the complete genomes for many organisms as well as higher throughput methods to genetically modify model organism genomes and observe and record phenotypes. Disease models comprise some of the most important tools of biomedical research. The efficacy of the use of disease models is based upon the principles of evolutionary conservation between sp…