Last week, I had the pleasure of teaching at the National Centre for Rare Diseases hosted by the Istituto Superiore di Sanità and Dr. Domenica Taruscio. This rare disease registry course is in its second year, and is focused on exposing the maintainers of rare disease registries various aspects of registry planning and management. I was very impressed with the specific way in which this course was run. The week started with a discussion of the different types of registries (aims, study design, data sources), management sustainability, and clinical outcomes analysis. This was followed by an innovative collaborative learning exercise in the afternoon, where the participants were broken up into three groups. The collaborative learning focused on positive interdependence, individual accountability, face-to-face interaction, group processing and exercise of small-group interpersonal skills - all skills needed to realize a quality registry resource in addition to simply being a quality pedagogical approach. Each group had a different rare disease scenario that they had to develop methods and strategies against using what they had learned in the morning session. On each of the following mornings for the rest of the week, they would learn new content such as reference standards and catalogues, coding of rare disease, omics links with biobanks, epidemiologic analyses and confounders, sample stratification, patient unique identifiers, quality assurance methods, data reporting and dissemination and informed consent. Each afternoon, they would then apply these themes to their ongoing scenarios such that the scenarios developed into robust full-fledged registry plans by the end of the week. The teamwork was amazing, as was the instructor engagement throughout the process.
We capped the week off with a Monarch presentation on "The application of the Human Phenotype Ontology" (HPO), where we discussed why rare disease phenotyping needs something more than standard clinical coding systems can provide. Many rare disease phenotypes are sprinkled throughout the literature and clinical notes in completely non-computable ways. The HPO was designed to address this problem and provide a structure on which to perform bioinformatics analyses. Phenotype comparisons can be between patients and known diseases, as shown in our recent paper where we used the HPO to help diagnose undiagnosed patients. Phenotype comparisons can also be across species as well, to aid candidate prioritization in tools such as Exomiser. We also discussed the Global Alliance for Genomics and Health Matchmaker exchange, and how the HPO was being used to identify cohorts in tools such as PhenomeCentral. Finally, we ended with a summary of tools being developed by Monarch to support quality assurance of phenotype data to aid clinicians during the course of their phenotyping. We believe that the efforts that Monarch is making to define an exchange standard for rare disease phenotyping will be of great value to the rare disease registry communities and are looking forward to working with them further on their data publication.